Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
J Med Chem ; 67(4): 2584-2601, 2024 Feb 22.
Article in English | MEDLINE | ID: mdl-38305199

ABSTRACT

A series of 28 compounds, 3-nitro-1H-1,2,4-triazole, were synthesized by click-chemistry with diverse substitution patterns using medicinal chemistry approaches, such as bioisosterism, Craig-plot, and the Topliss set with excellent yields. Overall, the analogs demonstrated relevant in vitro antitrypanosomatid activity. Analog 15g (R1 = 4-OCF3-Ph, IC50 = 0.09 µM, SI = >555.5) exhibited an outstanding antichagasic activity (Trypanosoma cruzi, Tulahuen LacZ strain) 68-fold more active than benznidazole (BZN, IC50 = 6.15 µM, SI = >8.13) with relevant selectivity index, and suitable LipE = 5.31. 15g was considered an appropriate substrate for the type I nitro reductases (TcNTR I), contributing to a likely potential mechanism of action for antichagasic activity. Finally, 15g showed nonmutagenic potential against Salmonella typhimurium strains (TA98, TA100, and TA102). Therefore, 3-nitro-1H-1,2,4-triazole 15g is a promising antitrypanosomatid candidate for in vivo studies.


Subject(s)
Chagas Disease , Leishmaniasis , Trypanocidal Agents , Trypanosoma cruzi , Humans , Structure-Activity Relationship , Chagas Disease/drug therapy , Triazoles/chemistry
2.
Eur J Med Chem ; 260: 115451, 2023 Nov 15.
Article in English | MEDLINE | ID: mdl-37573209

ABSTRACT

Chagas disease and leishmaniasis are neglected diseases of high priority as a public health problem. Pharmacotherapy is based on the administration of a few drugs, which exhibit hazardous adverse effects and toxicity to the patients. Thus, the search for new antitrypanosomatid drugs is imperative to overcome the limitations of the treatments. In this work, 46 2-nitroimidazole 3,5-disubstituted isoxazole compounds were synthesized in good yields by [3 + 2] cycloaddition reaction between terminal acetylene (propargyl-2-nitroimidazole) and chloro-oximes. The compounds were non-toxic to LLC-MK2 cells. Compounds 30, 35, and 44 showed in vitro antichagasic activity, 15-fold, 12-fold, and 10-fold, respectively, more active than benznidazole (BZN). Compounds 30, 35, 44, 45, 53, and 61 acted as substrates for the TcNTR enzyme, indicating that this might be one of the mechanisms of action involved in their antiparasitic activity. Piperazine series and 4-monosubstituted compounds were potent against T. cruzi parasites. Besides the in vitro activity observed in compound 45, the in vivo assay showed that the compound only reduced the parasitemia levels by the seventh-day post-infection (77%, p > 0.001) compared to the control group. However, 45 significantly reduced the parasite load in cardiac tissue (p < 0.01) 11 days post-infection. Compounds 49, 52, and 54 showed antileishmanial activity against intracellular amastigotes of Leishmania (L.) amazonensis at the same range as amphotericin B. These findings highlight the antitrypanosomatid properties of 2-nitroimidazole 3,5-disubstituted isoxazole compounds and the possibility in using them as antitrypanosomatid agents in further studies.


Subject(s)
Antiprotozoal Agents , Chagas Disease , Nitroimidazoles , Trypanosoma cruzi , Humans , Antiprotozoal Agents/chemistry , Chagas Disease/drug therapy , Isoxazoles/chemistry , Nitroimidazoles/pharmacology , Nitroimidazoles/therapeutic use , Structure-Activity Relationship , Cycloaddition Reaction
3.
Curr Top Med Chem ; 23(11): 1004-1041, 2023.
Article in English | MEDLINE | ID: mdl-37246323

ABSTRACT

Neglected tropical diseases (NTDs) affect mainly poor and marginalized populations of tropical and subtropical areas in 150 countries. Many of the chemical processes involved in the synthesis of active pharmaceutical ingredients (APIs) are highly polluting and inefficient, both in terms of materials and energy-consuming. In this review, we present the green protocols developed in the last 10 years to access new small molecules with potential applications in the treatment of leishmania, tuberculosis, malaria, and Chagas disease. The use of alternative and efficient energy sources, like microwaves and ultrasound, as well as reactions using green solvents and solvent-free protocols, are discussed in this review.


Subject(s)
Chagas Disease , Malaria , Humans , Neglected Diseases/drug therapy , Chagas Disease/drug therapy , Malaria/drug therapy
SELECTION OF CITATIONS
SEARCH DETAIL
...